If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-20=0
a = 5; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·5·(-20)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*5}=\frac{-20}{10} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*5}=\frac{20}{10} =2 $
| (x-4)*7=8-2x | | 3/8x-4/9=5/8x+7 | | x+6=-5x | | 2/3(12x-6)=4x×16 | | -x-4=x-10 | | 12x2=0 | | -6(-6-3v)=-3(5-6v)-3 | | 4(y+2)-6(y+1)=2(y+4)+2 | | 5(y-1)=-3(y-4)-1 | | x+x+2+3*(x+2)+9*(x+2)=96 | | X+1.4*x=100 | | 5t2-20=0 | | 6x-8=20-8x | | 84=12t | | s–13=9 | | 2,5*x-2.5=2,5 | | 5x-9÷2=8 | | 5x+16=3x+10 | | 8x=32x= | | x(8)=21 | | 0.5/x=4.5 | | x/4=2/x-2 | | F(x)=0.81(19)+168.3 | | F(19)=0.81(x)+168.3 | | F(19)=0.81x+168.3 | | 5m-38=-7(-4+4m | | 2x-(-10+1)=×-(-9+1) | | X*y=5000 | | X/23=y/42/161 | | 14-6w=5w-8 | | t/6+11/2=5 | | 4+h/5=6 |